LE SOLUZIONI PER LA DIALISI PERITONEALE

VINCENZO TERLIZZI ASST SPEDALI CIVILI BRESCIA

IV PERCORSO

I PER-CORSI IN NEFROLOGIA E DIALISI

LE COMPLICANZE DEL TRATTAMENTO SOSTITUTIVO

> 19 ottobre 2023 NH Hotel Pontevecchio Lecco

PROGRAMMA

► Storia

- Soluzioni standard
- Soluzioni biocompatibili
- ► Icodestrina
- ► Aminoacidi
- ▶ Teoria Osmo-metabolica
- Studi in corso
- Conclusioni

▶ 1744, physiologist and physicist Stephen Hales joined forces with surgeon and fellow Englishman Christopher Warrick to lay the foundation for peritoneal dialysis in humans. They attempted to treat a 50-yearold patient with ascites by first removing the excess abdominal fluid from the woman before using a leather tube to introduce a solution consisting of 50% water and 50% wine into her abdomen.

Prof. Dr. Georg Ganter Direktor d. Medizinischen Poliklinik Geboren in Unter-Schönmattenwag im Odenwald 1885 Greifswald 1918, Würzburg 1921, Rostock 1926

Wurtzburg, Germany, 1923

instilled saline solutions in volumes of approximately 50 mL

Between 1923 and 1948: 14 different types reported: different concentrations of sodium chloride and dextrose solutions, Ringer's, Rhoads', Hartmann's two modified Tyrode's, "A," "P," modified "P" solutions, Kolff's and two unknown.

Of the papers published after World War II, the most important are considered to be those of doctors Howard Frank, a surgical intern, Arnold Seligman, trained in chemistry, and Jacob Fine. The irrigation fluid used was Ringer's solution containing glucose, which was later changed to a Tyrode's solution, in their search for the right solution. They improved the irrigation fluid by **decreasing the sodium chloride concentration to 0.74% to reduce the risk of hyperchloremia**, added gelatin, and **increased the glucose concentration to increase the fluid tonicity** so they were able to control edema.

Bicarbonate was used in the irrigation fluid to combat acidosis. The bicarbonate solution was sterilized separately and **added to the solution before irrigation was initiated**.

The dialysis **solution was sterilized and administrated from special 20-L Pyrex bottles**, which required a large autoclave and were difficult to manipulate.

Schematic representation of closed system used by Frank, Seligman, and Fine (From Annals of Surgery 1948, with permission)

Closed system used by Frank, Seligman, and Fine (From Annals of Surgery, 1948 with permission)

Fig. 1.3 Maxwell's paired bottle technique (From JAMA 1959, with permission

1959, Toronto, Canada The new dialysis solution contained

- Na 140 mEq/L
- CI 101 mEq/L
- Ca 4mEq/L
- Mg 1.5 mEq/L
- Dextrose 15 g/L
- Lactate 45mEq/L

The lactate was replacing bicarbonate in the dialysis solution, eliminating the problem of precipitation of calcium salts. Potassium was excluded from the commercial dialysis solution because most of the patients with acute renal failure had hyperkalemia, but, if needed in patients with low serum potassium levels, it could be added to one of the **1 L bottles** using a hypodermic syringe.

Standard peritoneal dialysis solution

Na	132-134 mmol/l
К	0-2-4 mmol/l
Са	1,25-1,75 mmol/l
Mg	0,25-0,75 mmol/l
Cl	95-106 mmol/l
Lactate	35-40 mmol/l
Glucose	1,36/1,5-3,86/4,25 g/dl
Osmolality	y 347-486
pН	5,2-5,5

Cytotoxicity

Mariano Feriani JNEPHROL 2013; 26(Suppl 21): S76-S82

Wieslander A, et al. PDI 2001;21(suppl. 3):119-124

pyruvate metabolism),

impairment of mesothelial cell viability adverse effects on leukocyte recruitment accelerated angiogenesis and vascular proliferation low-grade inflammation epithelial-to-mesenchymal transition fibrosis and thickening of the peritoneal membrane formation of advanced glycation end products (AGEs)

partial loss of peritoneal ultrafiltration capacity fluid retention left ventricular hypertrophy, heart failure increased risk of cardiovascular morbidity

PD therapy

worsening of metabolic and nutritional problems impaired glucose tolerance, insulin resistance hyperlipidemia (atherogenic lipid profile) abdominal obesity

Bonomini et al. Int. J. Mol. Sci. 2021, 22(15), 7955 García-López, E. et al. Nat. Rev. Nephrol. 2012;8:224-233

Systemic and Local Impact of Glucose and Glucose Degradation Products in Peritoneal Dialysis Solution

Yong-Lim Kim, MD, Jang-Hee Cho, MD, Ji-Young Choi, MD, Chan-Duck Kim, MD, and Sun-Hee Park, MD

pH dependent formation of 3-DG (3-deoxyglucosone)

A "New" Generation of PD Solutions

Glucose based solutions

pH 7.0-7.4	рН 6.3	pH 7.0-7.4
Low GDPs	Low GDPs	Low GDPs
HCO3/Lactate	Lactate	HCO3

Alternative osmotic agents

Iso-osmolar Glucose free

Multicompartment bag system

J Perl et al Kidney Int 2011;79:814-824

An update on peritoneal dialysis solutions

Table 1 Selecte	d perito	oneal dialysis	solutions cur	rently available ir	i Europe				
Solution (manufacturer)	рН	Chambers	Buffer	Osmotic agent	GDPs	Advantages	Disadvantages		Glucose based
Dianeal® (Baxter*)	5.2	Single	Lactate	Glucose	High	Easy to manufacture; low cost	Low pH; poor peritoneal membrane biocompatibility; infusion pain; contains lactate	Glucosio anidro - monoidrato	1,36 – 1,5
Extraneal® (Baxter*)	5.6	Single	Lactate	Icodextrin	Low	Sustained ultrafiltration; reduced Contains lactate; low pH; single			2,27 – 2,3
()						profile and body composition			3,86 - 4,25
Nutrineal® (Baxter*)	5.5	Single	Lactate	Amino acids	No	Avoids glucose exposure; peritoneal membrane protection; enhanced nutrition	Contains lactate; low pH; single daily use only	Sodio (mEq/L)	132
Physioneal®	7.4	Double	Lactate/	Glucose	Low	Improved biocompatibility; preserved	Local and systemic glucose	Potassio (mEq/L)	0
(Baxter*)			bicarbonate			membrane defense; reduced infusion pain	exposure; reduced peritoneal lactate exposure	Cloruro (mEq/L)	96
Stay-safe® (Fresenius [‡])	5.5	Single	Lactate	Glucose	High	Ease of manufacture; low cost	Low pH; poor peritoneal membrane biocompatibility; infusion pain; contains lactate	Calcio (mmol/L)	1,25 – 1,75
Balance®	7.0	Double	Lactate	Glucose	Low	Improved biocompatibility; preserved	Higher but not neutral pH; local	Magnesio (mEq/L)	0.5
(Fresenius+)						peritonitis?	and systemic glucose exposure; contains lactate	Lattato (mEq/L)	35/0/15
BicaVera® (Fresenius‡)	7.4	Double	Bicarbonate	Glucose	Low	Improved biocompatibility; preserved membrane defense; improved correction of acidosis	Local and systemic glucose exposure	Bicarbonato (mEq/L)	0/34/25
Gambrosol® Trio (Fresenius‡)	6.5	Triple	Lactate	Glucose	Low	Improved biocompatibility; preserved	Higher but not neutral pH; local	Osmolalità (mOsm/kg)	346-485
				1 - 1 - 1			contains lactate	рН	7,4

Figure 1 | A schematic presentation of the potential beneficial effects of newer peritoneal dialysis solutions. Abbreviations: AGE, advanced glycation end product; PD, peritoneal dialysis; RRF, residual renal function; UF, ultrafiltration.

Cochrane Library

Cochrane Database of Systematic Reviews

Biocompatible dialysis fluids for peritoneal dialysis (Review)

Htay H, Johnson DW, Wiggins KJ, Badve SV, Craig JC, Strippoli GFM, Cho Y 2018

42 eligible studies (3262 participants

- 29 studies (1971 participants) compared neutral pH, low
- GDP PD solution with conventional PD solution
- 13 studies (1291 participants) compared icodextrin with

conventional PD solution

Studies of amino acid-based dialysis fluids were excluded

11 studies (1034 participants)

Peritoneal Dialysis International, Vol. 34, pp. 724–731 doi: 10.3747/pdi.2012.00331 0896-8608/14 \$3.00 + .00 Copyright © 2014 International Society for Peritoneal Dialysis

EFFECT OF BIOCOMPATIBLE PERITONEAL DIALYSIS SOLUTION ON RESIDUAL RENAL FUNCTION: A SYSTEMATIC REVIEW OF RANDOMIZED CONTROLLED TRIALS

Eun-Young Seo,¹ Sook Hee An,² Jang-Hee Cho,³ Hae Sun Suh,⁴ Sun-Hee Park,³ Hyesun Gwak,¹ Yong-Lim Kim,³ and Hunjoo Ha¹

Graduate School of Pharmaceutical Sciences,¹ College of Pharmacy, Ewha Global Top5 Program, Ewha Womans University, Seoul, Korea; Department of Pharmacy,² Wonkwang University, Iksan City, Jeonbuk, Korea; Division of Nephrology and Department of Internal Medicine,³ Kyungpook National University, Hospital, Daegu, Korea; and College of Pharmacy,⁴ Pusan National University, Korea

once follow-up reached 12 to 24 months

Urine Volume

Once the study duration exceeded 12 months

Peritoneal ultrafiltration

D/P creatinine ratio

Hospitalisation Peritonitis Technique survival Death

There is controversy in the literature regarding the mechanism by which biocompatible solutions preserves the RRF.

One is a direct beneficial effect of biocompatible solutions with lower level of GDP inducing apoptosis of renal tubular cell.

The other is an indirect effect which comes from less effective ultrafiltration and consequent hypervolemia. Editorial > Nephrol Dial Transplant. 2009 Sep;24(9):2620-2. doi: 10.1093/ndt, Epub 2009 Jun 23.

Preserving residual renal function in peritoneal dialysis: volume or biocompatibility?

Simon J Davies

Comment > Kidney Int. 2013 Nov;84(5):864-6. doi: 10.1038/ki.2013.303.

Biocompatible peritoneal dialysis solutions: many questions but few answers

Peter G Blake ¹, Arsh K Jain, Sechelle Yohanna

Figure 1 | **Weighing the evidence on biocompatible peritoneal dialysis solutions.** GDP, glucose degradation product; PD, peritoneal dialysis.

Peritoneal Dialysis International 2020, Vol. 40(3) 310-319 © The Author(s) 2020

journals.sagepub.com/home/ptd

Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/0896860819895356

(\$)SAGE

Guidelines

International comparison of peritoneal dialysis prescriptions from the Peritoneal Dialysis Outcomes and Practice Patterns Study (PDOPPS)

Angela Yee-Moon Wang¹, Junhui Zhao², Brian Bieber², Talerngsak Kanjanabuch³, Martin Wilkie⁴, Mark R Marshall⁵, Hideki Kawanishi⁶, Jeffrey Perl⁷, Simon Davies⁸; and PDOPPS Dialysis Prescription and Fluid Management Working Group

Table 4. Urea clearance (dialysis and residual kidney) and PD solution type by country and PD modality.

	A/NZ		Canada		Japan		Thailand		UK		US	
	APD	CAPD	APD	CAPD	APD	CAPD	APD	CAPD	APD	CAPD	APD	CAPD
Number of patients	213	111	269	107	195	337	26	521	149	72	2199	458
Total Kt/V urea	2.17 (0.76)	2.08 (0.91)	1.94 (0.94)	1.72 (0.89)	1.84 (0.57)	1.91 (0.78)	2.39 (0.67)	2.26 (0.93)	2.26 (0.70)	2.27 (0.61)	2.29 (0.62)	2.37 (0.72)
Residual Kt/V urea	0.88 (0.74)	0.85 (0.86)	0.71 (0.73)	0.54 (0.55)	0.75 (0.52)	0.79 (0.86)	0.59 (0.59)	0.53 (0.81)	0.89 (0.73)	1.23 (0.68)	0.74 (0.77)	0.90 (0.94)
Peritoneal Kt/V urea	1.29 (0.46)	1.19 (0.60)	1.23 (0.57)	1.18 (0.64)	1.09 (0.51)	1.16 (0.44)	1.75 (0.86)	1.73 (0.59)	1.35 (0.57)	1.04 (0.44)	1.55 (0.50)	1.47 (0.55)
24-h urine volume per BSA (L/1.73 m ²)	0.83 (0.64)	0.72 (0.65)	0.76 (0.61)	0.82 (0.60)	0.90 (0.73)	0.84 (0.61)	0.67 (0.65)	0.58 (0.69)	0.74 (0.54)	1.41 (0.70)	0.65 (0.63)	0.77 (0.79)
Anuric ^a (%)	7%/18%	13%/21%	16%/25%	11%/22%	8%/40%	6%/36%	33%/54%	28%/76%	8%/34%	3%/21%	23%/24%	20%/23%
PD solution type ^b												
lcodextrin	44%	53%	55%	65%	40%	46%	17%	0%	47%	78%	25%	16%
Nutrineal	1%	0%	1%	7%	0%	0%	0%	0%	0%	6%	0%	0%
Calcium \geq 3.5 mEg/L	7%	11%	20%	20%	40%	39%	13%	19%	14%	15%	42%	51%
Neutral pH low GDP	21%	44%	8%	15%	99 %	98%	0%	0%	29%	24%	0%	0%
PD solution glucose concentration	1.50/	2221	0.107	2 (2)	750/	4504	0001	700/	500/	570/	404	(0)
Without any 2.27% or 3.86% use	15%	22%	21%	26%	75%	65%	88%	72%	50%	57%	4%	6%
Use of 2.27% but not 3.86%	11%	76%	70%	55%	25%	35%	8%	19%	48%	44%	51%	50%
Use of any 3.86%	8%	3%	9 %	19%	0%	0%	4%	9 %	2%	0%	45%	44%

www.kidney-international.org

clinical trial

Neutral pH and low-glucose degradation product dialysis fluids induce major early alterations of the peritoneal membrane in children on peritoneal dialysis

UCT Check for updates

see commentary on page 246

Betti Schaefer^{1,28}, Maria Bartosova^{1,28}, Stephan Macher-Goeppinger², Peter Sallay³, Peter Vörös³,

106 peritoneal biopsy samples from 82 children on PD, all treated with low-GDP fluids

lacking is a control group of children treated with conventional solutions

a 1500^{-1} **b c d b c d d d fibrotic b c d d fibrotic c Average B** Hypervascularized **B** Hypervascularized **Hypervascularized Hypervascularized Hypervascularized Hypervascularized Hypervascularized Hypervascularized Hypervascularized Hypervascularized Hypervascularized Hypervascularized Hypervascularized Hypervascularized Hypervascularized Hypervascularized Hypervascularized Hypervascularized Hypervasculariz**

Figure 2 | Cluster analysis of patients treated with low-glucose degradation product peritoneal dialysis (PD) based on submesothelial thickness and microvessel density. Fibrotic type had increased submesothelial thickness with average microvessel density. (a) Hypervascularized peritoneum had increased microvessel density with average submesothelial thickness. For details on the 3 different clusters, please see Supplementary Table S2. Representative CD31 stainings of patients with (b) predominant hypervascularization, (c) average findings, and (d) predominant fibrotic changes after 8, 72, and 109 months of PD, respectively. Bar = 100 μm. To optimize viewing of this image, please see the online version of this article at www.kidney-international.org.

Figure 3 Low-plucose degradation product (GDP) peritoneal dialysis (PD)-induced cellular alterations. Cellular infiltration of the parietal peritoneum with alpha smooth muscle actin (ASMA)-positive activated fibroblasts, CD45-positive leukocytes, CD68-positive macrophages, and epithelial-co-mesenchymal transition (EMT) cells with time on low-GDP PD. CND5, chronic kidney disease stage 5.

Figure 4 1 Peritoneal vascular endothelial growth factor (VEGF) and tumor growth factor 8 (TGF-8) effector pSMDA blandance during low-glucose degradation product (GDP) peritoneal dialysis (DP), id) Parietal peritoneal roots-sectional VEG-fabultive leative to the total submesothelial area was analyzed. Whereas VEGF abundance is low in children with normal renal function and chronic khdrey disease stage 5 (XDS), peritonal VEGF abundance markedly increased within the first year (PD with pH-vertci, Id) AcoP fluids. (b) Representative VEGF staining of a CKDS patient. (c) VEGF staining after 11 months on PD. (d) Respective parietal peritoneal TGF-6-induced pSMAD abundance. (e) Representative pSMAD taining after 2005 patient. (f) pSMDA taining after 70 months of PD. Different superscript letters indicate significant differences between groups (P < 0.05). Bar = 100 µm. To optimize viewing of this image, please see the online version of this article at www.kdhev-internation. Early peritoneal angiogenesis : increase of blood microvessel density and endothelial surface exchange

> Submesothelial inflammation leukocytes, macrophages

Comment > Kidney Int. 2018 Aug;94(2):246-248. doi: 10.1016/j.kint.2018.04.014.

Is the peritoneal dialysis biocompatibility hypothesis dead?

Peter G Blake 1

"Where does this leave clinical practitioners of PD? If they have not been persuaded to use biocompatible fluids by now, the evidence from the Schaefer study will strengthen this view. If they have already been using the solutions, it has been a **leap of faith**, unsupported by high-level clinical evidence, and this will continue to be the case."

"It does suggest that the **glucose** that is present in both low-GDP as well as standard fluids is now the **best candidate to be the cause of the morphological changes** that occur with both types of solution. The replacement of glucose by **an alternative osmotic agent** may be more likely to attenuate these changes and their functional consequences."

ICODEXTRIN

FEATURES OF ICODEXTRIN

- Gluco-pyranose polymer (glucose chains)
- Produced by hydrolysis of starch and fractionation by membrane separation technique
- Distribution of oligopolysaccharides with chains of variable length
- Glucose polymer with average MW around 16,000 Da (MW = 12-20 kDa)
- Effects ultrafiltration through the numerous small intercellular pores (reflection coefficient = 1.0).

UF PROFILE: GLUCOSE vs ICODEXTRIN

Ho-Dac-Pannekeet et al, Kidney Int 1996; 50:979-86 Douma et al, Kidney Int 1998; 53:1014-21

The long dwell

SOLUTION

	Glucose based	Icodestrina
Glucosio	1,36 2,27 3,86	0
Poliglucosio (g/dL)		7.5
Sodio (mEq/L)	132-134	132
Cloruro (mEq/L)	96	96
Calcio (mmol/L)	1,25	1,75
Magnesio (mEq/L)	0.5	0.5
Lattato (mEq/L)	15	40
Bicarbonato (mEq/L)	25	0
Osmolalità (mOsm/kg)	346-485	284
рН	7,4	5.2

Yamaguchi N, Miyamoto K, Murata T, Ishikawa E, Horiuchi T. Newly developed neutralized pH icodextrin dialysis fluid: nonclinical evaluation. Artif Organs 2016; 40:E158-E166. Higuchi C, Kuriyma J, Sakura H. Effect of neutral pH icodextrin peritoneal dialysis fluid on mesothelial cells. Ther Apher Dial 2018; 22:656-661.

Nephrology Dialysis Transplantation

Original Article

Impact of icodextrin on clinical outcomes in peritoneal dialysis: a systematic review of randomized controlled trials

11 trials that enrolled 1222 participants

	Gluc	ose polyr	mer		Control			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
4.9.2 3 months									1000
Plum 2002 Subtotal (95% CI)	278	177.3	17	-138	324	16 16	78.5% 78.5%	416.00 [236.26, 595.74] 416.00 [236.26, 595.74]	
Heterogeneity: Not ap	picable								
Test for overall effect:	Z - 4.54	(P < 0.00	001)						
4.9.3 4 months									
Konings 2003 Subtotal (95% CI)	1,670	4,524.5	19 19	1,063	3,461.3	13 13	0.3%	607.00 [-2164.12, 3378.12] 607.00 [-2164.12, 3378.12]	
Heterogeneity: Not ap Test for overall effect:	plicable Z = 0.43	(P = 0.67))						
4.9.7 24 months									
Posthuma 2000	1.271	552.9	7	1,109	710.4	6	5.2%	162.00 [-538.62, 862.62]	
Takatori 2011 Subtotal (95% CI)	947.6	304.6	14 21	250	588.7	10 16	16.0%	697.60 [299.37, 1095.83] 510.55 [10.10, 1011.00]	-
Heterogeneity: Tau ² – Test for overall effect:	58900.4 Z = 2.00	0; Chi ² = 1 (P = 0.05)	.70, đi	- 1 (P -	0.19); F	- 41%			
Total (95% Ct)			57			45	100.0%	448.54 [289.28, 607.80]	•
Heterogeneity: Tau? -	0.00; Ch	F-2.28.	df = 3 (P - 0.52); F - 0%				trans the state rate
Test for overall effect	Z = 5.52	(P < 0.00	001)						Favours control Favours experiment

Peritoneal ultrafiltration MD 448.54 mL/day, 95% CI 289.28–607.80, P < 0.01

	Gluco	Glucose polymer			Control			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
2.4.1 Residual Glome	rular Filtr	ration F	tate (ml	L/min)					
Konings 2003	3.4	13.1	19	4.1	15.5	13	27.8%	-0.05 [-0.75, 0.66]	-
Subtotal (95% CI)			19			13	27.8%	-0.05 [-0.75, 0.66]	+
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 0.13	(P = 0.8)	89)						
2.4.2 Renal creatinin	e Clearan	ce (mL	/min/1.	73m2)					
Posthuma 2000	2.5	3.1	12	1.7	2.5	13	22.3%	0.28 [-0.51, 1.07]	
Subtotal (95% CI)			12			13	22.3%	0.28 [-0.51, 1.07]	*
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 0.69	(P = 0.4	19)						
2.4.3 Renal creatinin	e clearan	ce (mL	/min)						
Takatori 2011	2.4	2	14	3	3.1	10	20.9%	-0.23 [-1.05, 0.58]	
Subtotal (95% CI)			14			10	20.9%	-0.23 [-1.05, 0.58]	+
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 0.56	(P = 0.5	i8)						
2.4.4 Residual Renal	Function	(mL/mi	in/1.73r	m2)					
Plum 2002	2.9	3.3	17	1.7	2.4	16	29.1%	0.40 [-0.29, 1.09]	+=-
subtotal (95% CI)			17			16	29.1%	0.40 [-0.29, 1.09]	*
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 1.15	(P = 0.2	25)						
Total (95% CI)			62			52	100.0%	0.12 [-0.26, 0.49]	+
Heterogeneity: Tau ² =	0.00; Chi	2 - 1.73	. df = 3	(P = 0.0)	63); P	- 0%			<u> </u>
Test for overall effect:	Z = 0.62	(P = 0.5	54)						-4 -2 0 2 4
Test for a haroup diff	erences. (bi2 - 1	73 /11.	3 (P -	(153.0	12 - 090			ravours control Favours experiment

Residual renal clearance SMD 0.12, 95% CI -0.26 to 0.49, P = 0.5

	Glucose po	lymer	Contr	ol		Risk Ratio	Risk	Ratio
tudy or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	M-H, Rand	lom, 95% CI
4.1 12 months								
aniagua 2009 ubtotal (95% CI)	5	30 30	17	29 29	64.5% 64.5%	0.28 [0.12, 0.67 0.28 [0.12, 0.67		
otal events	5		17					
eterogeneity: Not ap	pplicable	0.004						
estion overall ellect	. Z = 2.00 (F =	0.004)						
4.2 24 months								
akatori 2011 ubtotal (95% CI)	3	21	9	20 20	35.5% 35.5%	0.32 [0.10, 1.01 0.32 [0.10, 1.01	-	•
otal events	3		9					
eterogeneity: Not ap	pplicable							
est for overall effect	Z=1.95 (P=	0.05)						
otal (95% CI)		51		49	100.0%	0.30 [0.15, 0.59	• •	
otal events	8		26					
eterogeneity: Tau ² =	= 0.00; Chi ² =	0.02, df:	= 1 (P = 0	.88); 12	= 0%		0.01 0.1	1 10 100
est for overall effect est for subgroup dif	Z = 3.47 (P = ferences: Chi	0.0005) = 0.02,	df=1 (P	= 0.88)), I² = 0%		Favours experimental	Favours control

TGURE 4: Effect of glucose polymer PD solution (icodextrin) use on uncontrolled fluid overload episode

Episodes of uncontrolled fluid overload RR 0.30,95% CI 0.15–0.59, P < 0.01

	Gluco	se poly	mer	C	ontrol			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
2.12.1 4 weeks									
Lin 2009	3.53	7.2	87	3.02	7.8	96	45.8%	0.07 [-0.22, 0.36]	÷-
Subtotal (95% CI)			87			96	45.8%	0.07 [-0.22, 0.36]	+
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 0.46	(P = 0.6	5)						
2.12.2 3 months									
Plum 2002	2.59	0.37	17	2.16	0.44	16	29.1%	1.03 [0.30, 1.77]	
Subtotal (95% CI)			17			16	29.1%	1.03 [0.30, 1.77]	-
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 2.77	(P = 0.0	06)						
2.12.4 12 months									
Posthuma 2000	4.4	0.63	10	4.3	0.99	11	25.1%	0.11 [-0.74, 0.97]	
Subtotal (95% CI)			10			11	25.1%	0.11 [-0.74, 0.97]	
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 0.26	(P = 0.7	9)						
Total (95% CI)			114			123	100.0%	0.36 [-0.24, 0.96]	-
Heterogeneity: Tau2 =	0.18; Chi	2 = 5.82	df = 2	(P = 0.0)); P	66%		-	
Test for overall effect:	Z = 1.18	(P = 0.2)	4)						
Test for subaroun diff.	erences: (hif - 5	- th \$8	2 (P -	0.05)	F = 65	6%		Pavours control Pavours experiment

Peritoneal creatinine clearance SMD 0.36, 95% CI -0.24 to 0.96 P = 0.2

Y. Cho et al. NDT, 2013

No significant differences in

- > Peritonitis
- Hospitalization
- Technique survival
- Patient survival
- Adverse events (rash)

AJKD

Original Investigation

Icodextrin Versus Glucose Solutions for the Once-Daily Long Dwell in Peritoneal Dialysis: An Enriched Systematic Review and Meta-analysis of Randomized **Controlled Trials**

Käthe Goossen, Monika Becker, Mark R. Marshall, Stefanie Bühn, Jessica Breuing, Catherine A. Firanek, Simone Hess, Hisanori Nariai, James A. Sloand, Qiang Yao, Tae Ik Chang, JinBor Chen, Ramón Paniagua, Yuji Takatori, Jun Wada, and Dawid Pieper

ABCDEFG Events Total Events Total Weight M-H. Fixed, 95% M-H. Fixed, 95% C eight IV. Random, 95% (2.6.1 ≤ 6 week 220.6 560.9 1.6% 3.00 [0.13, 69.87] 1.6% 3.00 [0.13, 69.87] 2020020 Yu 2002 309 79 236 89 Subtotal (95% CI) 22 558.6 284.8 420.8 298.45 222.3 420.9 88.5 165.51 -115 398.8 93 24.3% 93 24.3% 26 7.7% 18 5.7% Total events Ota 2003 Plum 2002 Heterogeneity: Not applicable Wolfson 2002A Subtotal (95% CI) 605.827 280 379.988 339.3 Test for overall effect: Z = 0.68 (P = 0.49 358 = 0.01; Chi² = 6.07, df = 5 (P = 0.30); I² = 18% 2.6.2 3-6 month: Davies 2003 21 5.4% 27 5.1% 103 3.3% 151 13.8% 0.26 [0.01, 6.12] 0.29 [0.01, 6.88] 0.97 [0.06, 15.33] 475 478.62 45 1,217.48 514.49 21 133.9 668.97 24 320 259.65 17 1,670 1,038 19 549.5 288.8 84 1,264 427.79 27 206 156.7 17 206 156.7 17 276 148.66 7 770.8 432.3 21 844 336 842 336 844 336 844 336 847 336 848 346 848 346 de Moraes 2015 31 106 164
 45
 388.33
 815

 21
 929.57
 399.07

 24
 -11.34
 796.86

 17
 -80
 283.96

 19
 1.063
 960

 84
 229.6
 416.8

 27
 1.144.13
 434.8

 17
 -166
 416.4

 7
 2.33
 469.98

 21
 164.3
 431.6

 36
 1.048
 347.
 Chang 2016 Chen 2018 Davies 2003 de Moraes 201 Konings 2003 Mistry 1994 Paniagua 2009 Plum 2002 Mistry 1994 11.5% 11.1% 8.4% 9.2% 24.8% 13.2% 9.0% 4.2% 8.5% Subtotal (95% CI) 0.44 [0.08, 2.32] Total events $deterogeneity: Chi^2 = 0.49, df = 2 (P = 0.78); l^2 = 0\%$ Test for overall effect: Z = 0.97 (P = 0.33 2.6.3 1-2 years Posthuma 200 Takatori 2011 Yoon 2014 Subtotal (95% CI) Chang 2016 0.21 [0.01, 4.23] 0 21 6 30 3 21 121 Chen 2018 2 22 7.9% 0.21 [0.01, 4.11] 12 29 39.2% 0.48 [0.21, 1.12] 9 20 29.6% 0.32 [0.10, 1.01] 122 84.6% 0.37 [0.20, 0.72] Paniagua 2009 Heterogeneity: $Tau^2 = 0.04$; $Chi^2 = 11.29$, df = 8 (P = 0.19); $I^2 = 29\%$ Test for overall effect: Z = 6.28 (P < 0.00001) akatori 201 Subtotal (95% CI) 1.6.3 1-2 year Total events
 535.67
 499.36
 41
 489
 768.24

 1,375.83
 550.07
 20
 925.5
 382.99

 1,208.22
 374.67
 18
 1,318.25
 429.21

 232.57
 143.93
 7
 15.67
 394.68

 947.6
 304.6
 14
 250
 588.7
 Chang 2016 Chen 2018 Heterogeneity: $Chi^2 = 0.73$, df = 3 (P = 0.87): $I^2 = 0\%$ 18 27.9% Test for overall effect: Z = 2.97 (P = 0.003 aniagua 2009 20 28.5% Posthuma 2000 6 20.5% 295 100.0% 0.43 [0.24. 0.76] Total (95% CI) 307 Takatori 2011 9 23.1% 921 332 35 59 1,034 470 33 Not estimable 53 100.0% 0.68 [-0.12, 1.49] Total events Subtotal (95% CI) Heterogeneity: Chi² = 2.74, df = 7 (P = 0.91); I² = 0% erogeneity: Tau² = 0.49: Chi² = 11.53. df = 3 (P = 0.009): l² = 74% 0.002 0.1 Test for overall effect: Z = 2.89 (P = 0.004)Test for overall effect: Z = 1.66 (P = 0.10) Favours ICO Favours GLL est for subgroup differences: $Chi^2 = 1.62$, df = 2 (P = 0.45), $I^2 = 0\%$ Risk of bias legend (A) Random sequence generation (selection bias est for subgroup differences: $Chi^2 = 0.95$, df = 2 (P = 0.62), $l^2 = 0$ (B) Allocation concealment (selection bias) <u>tisk of bias legend</u> A) Random sequence generation (sele (C) Blinding of participants and personnel (performance bias (D) Blinding of outcome assessment (detection bias) ation concealment (selection bias) ing of participants and personnel (per (E) Incomplete outcome data (attrition bias) (F) Selective reporting (reporting bias) (G) Other bia

Figure 5. Uncontrolled fluid overload, Results with random-effects modeling are: risk ratio (RR: ≤6 weeks, 3.00 [0.13-69.87]; 3-6 onths, 0.45 [0.08-2.58];1-2 years, 0.39 [0.21-0.75];total, 0.43 [0.24-0.78]. Risk-of-bias legend: (A) random sequence generation ction bias), (B) allocation concealment (selection bias), (C) blinding of participants and personnel (performance bias), (D) blindssment (detection bias), (E) incomplete outcome data (attrition bias), (F) selective reporting (reporting bias), and ations; CI, confidence interval; GLU, glucose; ICO, icodextrin; SD, standard deviation; Std, standardized,

iltration (any measure); (A) by duration of treatment; (B) by transport category including high/high-average (H/H vaverage (LA), and low (L) transporters. Risk of bias legend: (A) random sequence generation (selection bias), (B) allocation concealment (selection bias), (C) blinding of participants and personnel (performance bias), (D) blinding of outcome assessm (detection bias). (F) incomplete outcome data (attrition bias). (F) selective reporting (reporting bias), and (G) other bias. Abbrev tions: CL confidence interval: GLU, glucose: ICO, icodextrir

Risk of Bias A B C D E F

V. Random, 95

1.06 [0.75, 1.37] 0.92 [0.61, 1.23]

1.36 [0.75, 1.98]

0.72 [0.41, 1.04]

Not estimable 0.61 [-0.01, 1.23] 0.34 [-0.30, 0.97] 1.44 [0.67, 2.20] 0.59 [-0.13, 1.31] 0.88 [0.57, 1.19] 0.34 [-0.22, 0.90] 1.15 [0.42, 1.89] 0.76 [-0.39, 1.90] 1.37 [0.61, 2.13] Not estimable

Not estimable 0.80 [0.55, 1.05]

0.92 [0.25, 1.59] -0.27 [-0.91, 0.37] 0.70 [-0.43, 1.84]

1.54 [0.57, 2.52]

Ultrafiltration was improved with icodextrin (medium-term MD, 208.92 [95% CI, 99.69-318.14] mL/24 h; high certainty of evidence), reflected also by fewer episodes of fluid overload (RR, 0.43 [95% CI, 0.24-0.78]; high certainty).

Icodextrin-containing PD probably decreased mortality risk compared to glucose-only PD (Peto OR, 0.49 [95% CI, 0.24-1.00]; moderate certainty).

Despite evidence of lower peritoneal glucose absorption with icodextrincontaining PD (medium-term MD, -40.84 [95% CI, -48.09 to -33.59] g/ long dwell; high certainty), this did not directly translate to changes in fasting plasma glucose (-0.50 [95% CI, -1.19 to 0.18] mmol/L; low certainty) and **hemoglobin A1c levels** (-0.14% [95% CI, -0.34% to 0.05%]; high certainty).

Safety outcomes and residual kidney function were similar in both groups; health-related quality-of-life and pain scores were inconclusive.

19 RCTs that enrolled 1,693 participants

	100		611			Pato Odds Patio	Pato Oddr Patio	Rick of Rise
Study or Subgroup	Events	Total	Events	Total	Weight	Peto, Fixed, 95% CI	Peto, Fixed, 95% CI	ABCDEFG
1.1.1 ≤ 6 weeks								
Bredie 2001	0	11	0	11		Not estimable		2229292
Chow 2014	ō	23	ō	33		Not estimable		0020200
Finkelstein 2005	ō	47	0	45		Not estimable		
Lin 2009	- i	98	0	103	3.3%	7.78 (0.15, 392,35)		6666676
Ota 2003	ō	26	ō	28		Not estimable		2000020
Wolfson 2002A	0	90	0	85		Not estimable		
Yu 2002	0	22	0	22		Not estimable		2020020
Subtotal (95% CI)		317		327	3.3%	7.78 [0.15, 392.35]		
Total events	1		0					
Heterogeneity: Not ap	plicable							
Test for overall effect	Z = 1.03	(P = 0)	.31)					
1.1.2 3-6 months								
Davies 2003	0	27	0	21		Not estimable		6666676
de Moraes 2015	0	33	1	27	3.3%	0.11 [0.00, 5.57]		@@?@?@@
Konings 2003	0	22	0	18		Not estimable		? 9 ? 9 ? 9 ?
Mistry 1994	0	106	2	103	6.6%	0.13 [0.01, 2.10]		
Plum 2002	1	20	0	19	3.3%	7.03 [0.14, 354.68]		8 288828
Subtotal (95% CI)		208		188	13.3%	0.34 [0.05, 2.42]	-	
Total events	1		3					
Heterogeneity: Chi ² -	3.07, df	= 2 (P	- 0.22);	$1^2 = 35$	%			
Test for overall effect	Z = 1.08	(P = 0)	.28)					
1.1.3 1-2 years								
Chang 2016	1	49	0	51	3.3%	7.70 [0.15, 388.20]		0070000
Chen 2018	1	21	0	22	3.3%	7.75 [0.15, 390.96]		
Paniagua 2009	0	30	6	29	18.3%	0.11 [0.02, 0.58]		
Posthuma 2000	0	19	5	19	14.9%	0.11 [0.02, 0.68]		3 8 3 8 3 3 8
Takatori 2011	0	21	1	20	3.3%	0.13 [0.00, 6.50]		3550560
Wolfson 2002B	7	175	4	112	33.7%	1.12 [0.33, 3.85]		0000350
Yoon 2014	1	41	1	39	6.6%	0.95 [0.06, 15.48]		3 8 5 8 8 5 8
Subtotal (95% CI)		320		292	83.4%	0.47 [0.21, 1.02]	-	
Total events	10		17					
Heterogeneity: Chir =	11.93, di	= 6.0	= 0.06)	c n = 5	0%			
Test for overall effect	2 = 1.91	(P = 0	.06)					
Total (95% CI)		881		807	100.0%	0.49 [0.24, 1.00]	•	
Total events	12		20				•	
Heterogeneity: Chi ² =	17.06. df	= 10	(P = 0.0)	7): 1 ² =	41%			
Test for overall effect	Z = 1.95	(P = 0	.05)				0.001 0.1 1 10 1000	
Test for subgroup diff	ferences:	Chi ² =	2.06, df	= 2 (P	= 0.36),	² = 2.9%	Favours ICO Favours GLU	
Risk of bias legend								
(A) Bandom sequence	generatio	on (sele	ction bia	15)				
(B) Allocation conceal	ment (sele	ection I	bias)					
(C) Blinding of particit	pants and	persor	nnel (per	formar	ce bias)			
(D) Blinding of outcom	ne assessi	ment (detection	bias)				
(E) Incomplete outcom	ie data (a	trition	bias)					
(F) Selective reporting	(reportin	g bias)						
(G) Other bias		,						
				_				
Figure 3. Mortality ev	ents; sh	ort ter	m after	6 or m	ore wee	ks, medium term at	ter 3 to 6 months, and long term :	after 1 to 2 years. Risk
of bias legend: (A) R	andom s	equer	nce gen	eratio	n (select	ion bias), (B) alloc	ation concealment (selection bias	a), (C) blinding of par-
ticipants and personn	el (perfo	rmanc	e bias).	(D) bl	inding of	outcome assessm	ent (detection bias). (E) incomple	te outcome data (attri-
tion hine) (E) coloctio	in report	ing (s	onortin/	, hinel	and (C	ather bise Abbr	aviatione: CL confidence internal	GUL alugona: ICO
inon masy, (P) selection	re repon	mA (t	oporting	y ulas)	, and (C	a other blas. Abbr	eviational Oi, confidence interval	, GLO, 900088; ICO,
icodextini.								

Am J Kidney Dis. 75(6):830-846; 2020

Wolfson M. Am J Kidney Dis. 2002;40:1055-1065

García-López E, Lindholm B. Perit Dial Int 2009; 29:370-376

ICODEXTRIN METABOLITES

al Dialysis Internationa

ab

Peritoneal Dialysis International, Vol.18, pp 603-609 Printed in Canada. All rights reserved 08968608/98 \$300 + 00 Copyright @ 1998 International Society for Peritoneal Dialysis

...glucose dehydrogenase enzymatic reaction

A PREVIOUSLY UNDESCRIBED SIDE EFFECT OF ICODEXTRIN:

OVERESTIMATION OF GLYCEMIA BY GLUCOSE ANALYZER

www.glucosesafety.com

Robert Wens, 1 Michel Taminne,3 Jacques Devriendt,2 Frédéric Collart,1 Nilüfer Broeders,1 Fabienne Mestrez,1

Henri Germanos,1 Max Dratwa 1

Soluzioni Aminoacidi (1.1%)

Essential

Non essential

Histidine Isoleucine Leucine Lysine Methionine Phenylalanine Threonine Tryptophan Valine

Alanine Arginine Glycine Proline Serine Tyrosine

glucose free

Osm. 365 pH 6.6 latt. 40

14.1g (64%)7.9 g (36%)

Nutrition in patients on peritoneal dialysis

Seung-Hyeok Han and Dae-Suk Han. Nat. Rev. Nephrol. 2012;8:163-175

Table 2 Studies showing positive effects of 1.1% amino acid-based solution in patients on peritoneal dialysis											
Study	Study type	Population	Interventions	Follow-up	Result						
Bruno <i>et al.</i> (1989) ¹²⁵	Crossover	6	One exchange of a 1.1% amino acid-based solution	6 months	↑ nitrogen balance and MAMC; ↓ serum bicarbonate						
Arfeen <i>et al.</i> (1990) ¹²⁶	Case series	7	Two exchanges of a 1.1% amino acid-based solution	2 months	† serum albumin; ↓ serum bicarbonate						
Kopple et al. (1995) ¹²⁷	Case series	19	1–2 exchanges of a 1.1% amino acid-based solution	20 days	↑ nitrogen balance, BUN and transferrin; ↓ serum bicarbonate						
Faller et <i>al.</i> (1995) ¹²⁸	Case series	15	One exchange of a 1.1% amino acid-based solution	3 months	↑ serum albumin, BUN and transferrin; no change in serum bicarbonate						
Chertow et al. (1995) ¹²⁹	Observational	183	One exchange of a 1.1% amino acid-based solution	Mean 6.6 months	↑ serum albumin; no change in serum bicarbonate						
Misra et al. (1996) ¹³⁰	Randomized crossover	18	One exchange of a 1.1% amino acid-based solution	6 months	Improved nutrition score; no change in serum albumin and transferrin; † serum albumin in patients with baseline albumin <30.0g/I						
Jones et al. (1998) ¹³¹	Randomized controlled	134	One or two exchanges of a 1.1% amino acid-based solution ($n=71$); control ($n=63$)	3 months	IGF-I, serum albumin, prealbumin, and transferrin; ↓ serum bicarbonate						
Taylor et al. (2002) ¹³²	Observational	22	One exchange of a 1.1% amino acid-based solution	Mean 13.6 months	f serum albumin and nPCR; one episode of peritonitis per 23 treatment months; 4% annual mortality rate						
Li et al. (2003) ¹³³	Randomized controlled	60	One exchange of a 1.1% amino acid-based solution $(n=30)$; control $(n=30)$	36 months	↑ nPNA and DPI; no change in mortality rate and incidence of peritonitis						
Park et al. (2006) ¹³⁴	Observational	43	One exchange of a 1.1% amino acid-based solution	12 months	↑ LBM, hand grip strength, nPNA and IGF-I; no change in serum albumin, prealbumin and DPI; ↓ serum bicarbonate						

Abbreviations: BUN, blood urea nitrogen; DPI, dietary protein intake; IGF-I, insulin-like growth factor I; LBM, lean body mass; MAMC, mid-arm muscle circumference; nPNA, normalized protein nitrogen appearance; nPCR, normalized protein catabolic rate.

Randomized, Controlled Trial of Glucose-Sparing Peritoneal Dialysis in Diabetic Patients

Philip K.T. Li,* Bruce F. Culleton,[†] Amaury Ariza,[‡] Jun-Young Do,[§] David W. Johnson,^{||} Mauricio Sanabria,[†] Ty R. Shockley,[†] Ken Story,[†] Andrey Vatazin,[¶] Mauro Verrelli,** Alex W. Yu,^{††} and Joanne M. Bargman,^{‡‡} on behalf of the IMPENDIA and EDEN Study Groups

Secondary outcome

Primary outcome: change in HbA1c

Figure 2. Mean hemoglobin A_{1c} (±SEM) at baseline, month 3, and end of study by treatment group in the intention-to-treat population. HbA1c, hemoglobin A_{1c} .

VLDL	₽
Apolipoprotein B	₽
Triglycerides	₽
Albumin	♣
Deaths (not solutions related)	
Serious adverse events (ECFV expansion)	

A low-glucose dialysis regimen improves metabolic indices in diabetic patients receiving peritoneal dialysis but may be associated with an increased risk of extracellular fluid volume expansion.

Thus, use of glucose-sparing regimens in peritoneal dialysis patients should be accompanied by close monitoring of fluid volume status.

J Am Soc Nephrol. 2013; 24:1889-1900

Peritoneal Dialysis International I-10 © The Author(s) 2020

DOI: 10.1177/0896860819895364 journals.sagepub.com/home/ptd

Article reuse guidelines: sagepub.com/iournals-permissions

(\$)SAGE

International Society for Peritoneal Dialysis practice recommendations: Prescribing high-quality goal-directed peritoneal dialysis

Edwina A Brown¹, Peter G Blake², Neil Boudville³, Simon Davies^{4,5}, Javier de Arteaga⁶, Jie Dong⁷, Fred Finkelstein⁸, Marjorie Foo⁹, Helen Hurst¹⁰, David W Johnson¹¹, Mark Johnson¹², Adrian Liew¹³, Thyago Moraes¹⁴, Jeff Perl¹⁵, Rukshana Shroff¹⁶, Isaac Teitelbaum¹⁷, Angela Yee-Moon Wang¹⁸ and Bradley Warady¹⁹

Clinical use of recommendations

Which dialysis solution?

Peritoneal Diaysis Outcomes and Practice Patterns Study (PDOPPS) data¹³ showed significant variations in the use of different strengths of hypertonic glucose PD solutions, icodextrin and neutral pH, low glucose degradation product (GDP) solutions depending on availability and reimbursement policies in different countries. Longer follow-up is needed to determine the association between the use of these solutions and patient outcomes. The ISPD cardiovas-cular guideline published in 2015⁹ recently reviewed the evidence regarding icodextrin, neutral pH and low GDP solutions; this has been updated by a Cochrane review published in 2018.¹⁴

A. Once-daily icodextrin should be considered as an alternative to hypertonic glucose solutions for long dwells in people doing PD who are experiencing difficulties maintaining euvolemia due to insufficient peritoneal ultrafiltration, taking into account the individual's peritoneal transport state (**GRADE 1B**).

Poor solute removal	Blood tests Small solute clearance (Kt/V _{urea} ; creatinine clearance) Nutrition assessment
Non-dialysis factors:	Frailty assessment
comorbidities, frailty,	Cognitive function assessment
protein-energy wasting	Nutrition assessment
	Hospitalization rate

PD: peritoneal dialysis.

B. Use of neutral pH, low GDP PD solutions improves preservation of residual kidney function and urine output (GRADE 1A). There is low certainty evidence that use of these fluids may have little or no effect on technique survival or mortality.

Identification of individuals who are 'failing to thrive'

When prescribing person-centred high-quality PD, a challenge is to identify individuals who would benefit from an increase in dialysis prescription or change in dialysis

Guidelines

PVC

Polivinilcloruro

Plastificanti (ftalati)

Combustione: acido cloridrico e suoi prodotti di reazione ...diossine Biofine ®

Clear-flex®

NO PVC

NO Plastificanti

Combustione: H2O e CO2 Review

How to Improve the Biocompatibility of Peritoneal Dialysis Solutions (without Jeopardizing the Patient's Health)

Mario Bonomini ^{1,*}, Valentina Masola ^{2,3}, Giuseppe Procino ⁴, Victor Zammit ⁵, José C. Divino-Filho ⁶, Arduino Arduini ⁷ and Giovanni Gambaro ²

The "Osmo-Metabolic" approach to PD solutions

Osmo-metabolites are substances which exhibit both osmotically and metabolically favorable properties

This approach would ensure glucose-sparing not only by reducing intraperitoneal glucose exposure without compromising ultrafiltration, but also by the independent mitigation of underlying systemic negative metabolic effects caused by the glucose load, a sort of

bioactive glucose sparing

Carnitine

- Mitochondrial b-oxidation of long-chain fatty acids
- Modulation of th acetyl-CoA/free CoA ratio in mitochondria
- Key role in intermediary metabolism

✓ pyruvate dehydrogenase (PDH) kinase involved in metabolism of glucose
oxidation

- ✓ pyruvate carboxylation (PC), a pivotal enzyme in gluconeogenesis
- ✓ promotion of autophagy

L-Carnitine (molecular weight 161.2 Da) is a naturally occurring compound known to be essential for fatty acid

The presence in mitochondria of the equilibrium enzyme

CrAT, increases acetyl-carnitine production at the expenses of acetyl-CoA, due to a mass-action effect driven by the increased L-carnitine concentration. Therefore, the possibility to modulate the intra-mitochondrial acetyl-CoA pool by overexposure of tissues to carnitine, may have favourable metabolic consequences toward glucose and lipid homeostasis

in insulin resistance and diabetic patients, because acetyl-CoA plays a key role in the regulation of several important cellular functions such as

gluconeogenesis, glucose oxidation, protein acetylation, and steroid and fatty acid biosynthesis. Bonomini et al. Journal of Nephrology (2021) 34:503–519

Xylitol is a five-carbon sugar alcohol (pentitol, molecular weight 151.2 Da)

The potential favourable effects of exogenous xylitol administration on glucose homeostasis:

- the glycaemic index of xylitol is much lower than that of glucose

- xylitol is a very poor insulin-secretagogue

- Xy-5-P is an allosteric activator of protein phosphatase 2A, this results in a rapid increase in F 2,6-P2, activation of phosphofructokinase, thus activating glycolysis, and inhibiting gluconeogenesis

Introduce more than one osmo-

metabolic agent into the dialysate

with the aim of achieving a

favorable synergetic action.

The L-Carnitine/Xylitol Approach in PD Fluid: a Bioactive Glucose Sparing

Reduced Glucose concentration

not altering the UF profile

Bonomini et al. Journal of Nephrology (2021) 34:503-519

Article

Biological Effects of XyloCore, a Glucose Sparing PD Solution, on Mesothelial Cells: Focus on Mesothelial-Mesenchymal Transition, Inflammation and Angiogenesis

Valentina Masola ^{1,2,*}, Mario Bonomini ³, Maurizio Onisto ², Pietro Manuel Ferraro ^{4,5}, Arduino Arduini ⁶ and Giovanni Gambaro ¹

Article

A New Peritoneal Dialysis Solution Containing L-Carnitine and Xylitol for Patients on Continuous Ambulatory Peritoneal Dialysis: First Clinical Experience

Carmela Rago ^{1,†}, Teresa Lombardi ^{1,†}, Giorgia Di Fulvio ¹, Lorenzo Di Liberato ¹, Arduino Arduini ², José C. Divino-Filho ³ and Mario Bonomini ^{1,*}

On going study

ELIXIR trial is a randomized, controlled, parallel groups, international multicenter study, whose primary objective is the noninferiority of the experimental solution compared to a glucose- based low-GDP PD solution with regard to safety and efficacy, CAPD over a 6-month treatment period (NCT03994471).

Study Start (Actual) 0	
2022-12-14	
Primary Completion (Estimated)	
2024-12	
Study Completion (Estimated)	
2024-12	
Enrollment (Estimated) 🚯	
170	
170 Study Type 1	
170 Study Type ① Interventional	
170 Study Type ① Interventional Phase ①	
170 Study Type ① Interventional Phase ① Phase 3	

Conclusions

Glucose is effective for UF but it's a devil

More and more elderly, frail, diabetic patients

Importance of preserving the RRF

Cost considerations

LE SOLUZIONI PER LA DIALISI PERITONEALE

VINCENZO TERLIZZI ASST SPEDALI CIVILI BRESCIA

IV PERCORSO

I PER-CORSI IN NEFROLOGIA E DIALISI

LE COMPLICANZE DEL TRATTAMENTO SOSTITUTIVO

> 19 ottobre 2023 NH Hotel Pontevecchio Lecco